sPHENIX Simulations Meeting

Vera Loggins 2-2-2016

Goals of the study

Module to reconstruct the pi0

- 1. Find a local maximum tower
- 2. Group 3 x 3 cluster around it (also 5x5, 7x7)
- 3. Pair two clusters & look at the invariant mass peak
- 4. Show the invariant mass vs pT, asymmetry between the two photons.
- 5. Pythia + pi0 embedded to look at invariant mass
 - 1. A module is needed to adjust the gain by expectation out of factory, then check pi0 peak again —> Quantify the gain variation we tolerate in 1 day.
 - 2. Obtain a global energy scale correction —> how good can we do a global energy scale calibration
 - 3. Tower by tower gain calibration —> how well we can calibrate the EMCAL
 - 1. do pi0 simulation
 - 2. calibrate the gain, check calibrated gain vs truth

References:

- Discussions with: Jin Huang, Craig Woody, David Gabor
- Jeff Mitchell @ sPHENIX software & simulation Workfest July 2015 "Experience on EMCal calibration @ PHENIX"

https://indico.bnl.gov/conferenceOtherViews.py?view=standard&confld=1237

Clusterizer Overview

The 2D SPACAL was used in this study.

- Find a local maximum tower for each event.
- 2. Group 3 x 3 cluster around it (also 5x5, 7x7)

Energy Resolution

- I. Find the maximum energy tower
- 2. Find the 3by3 cluster of its neighbors (same for 5x5 & 7x7)
- 3. Take the sigma from the gaussian fit of the total energy/reconstructed energy (sigma(E)/E)

The 2D SPACAL was used in this study.

Energy Resolution

The 2D SPACAL was used in this study.

Energy Resolution compared to the pCDR

Fit values (total energy) obtained: $\Delta E / E = 2.5\% + 9.5\% / \sqrt{E}$

Most similar to 2D proj. (eta range 0.9-1): $\Delta E / E = 2.0\% + 9.4\% / \sqrt{E}$

convoluted Fit values (total energy) obtained:

 $\Delta E / E = 3.8\% \oplus 11.7\% / \sqrt{E}$

Most similar to 2D proj. (eta range 0.9-1): $\Delta E / E = 3.0\% \oplus 11.7\% / \sqrt{E}$

Energy Resolution compared to the pCDR

from the pCDR

Fit values (total energy) obtained: $\Delta E / E = 1.9\% + 9.1\% / \sqrt{E}$

Most similar to 2D proj. (eta range 0.9-1): ΔI

 $\Delta E / E = 2.0\% + 9.4\% / \sqrt{E}$

convoluted Fit values (total energy) obtained:

 $\Delta E / E = 2.8\% \oplus 11.9\% / \sqrt{E}$

Most similar to 2D proj. (eta range 0.9-1):

 $\Delta E / E = 3.0\% \oplus 11.7\% / \sqrt{E}$

Summary / To Do List

Completed:

- Clusterize 3x3, 5x5, 7x7 tower energy per event for photons
- obtain the energy resolution and compare to pCDR
- (repeat for electrons)

To Do List:

• Find the second tower per event to pair two clusters and find the invariant mass peak